Rechargeable Uv Light Nano Sprayer Disinfectant Gun
In enzymology, a dTMP kinase (EC 2.7.4.9) is an enzyme that catalyzes the chemical reaction: ATP + dTMP rightleftharpoons ADP + dTDP. Thus, the two substrates of this enzyme are ATP and dTMP, whereas its two products are ADP and dTDP. This enzyme belongs to the family of transferases, specifically those transferring phosphorus-containing groups (phosphotransferases) with a phosphate group as acceptor. This enzyme participates in pyrimidine metabolism.
In enzymology, a dtmp kinase (ec 2.7.4.9) is an enzyme that catalyzes the chemical reaction: atp + dtmp rightleftharpoons adp + dtdp. Thus, the two substrates of this enzyme are atp and dtmp, whereas its two products are adp and dtdp. This enzyme belongs to the family of transferases, specifically those transferring phosphorus-containing groups (phosphotransferases) with a phosphate group as acceptor. This enzyme participates in pyrimidine metabolism.
Creatine kinase, muscle also known as CKM is a creatine kinase that in humans is encoded by the CKM gene. In the figure to the right, the crystal structure of the muscle-type M-CK monomer is shown. In vivo, two such monomers arrange symmetrically to form the active MM-CK enzyme. In heart, in addition to the MM-CK homodimer, also the heterodimer MB-CK consisting of one muscle (M-CK) and one brain-type (B-CK) subunit is expressed. The latter may be an important serum marker for myocardial infarction, if released from damaged myocardial cells into the blood where it can be detected by clinical chemistry.
Creatine Kinase MM is a cytoplasmic enzyme involved in energy homeostasis and is an important serum marker for myocardial infarction. The encoded protein reversibly catalyzes the transfer of phosphate between ATP and various phosphogens such as creatine phosphate. It acts as a homodimer in striated muscle as well as in other tissues, and as a heterodimer with a similar brain isozyme in heart. The encoded protein is a member of the ATP:guanido phosphotransferase protein family.
Factor V activator for RVV contains fucose, mannose, galactose, glucosamine, and neuraminic acid. Factor V activating enzyme from RVV is an arginine esterase that is sensitive to diisopropyl fluorophosphate (DFP).
Factor V activator for RVV contains fucose, mannose, galactose, glucosamine, and neuraminic acid. Factor V activating enzyme from RVV is an arginine esterase that is sensitive to diisopropyl fluorophosphate (DFP).
Glycerol-3-phosphate dehydrogenase (GPDH) is an enzyme that catalyzes the reversible redox conversion of dihydroxyacetone phosphate (aka glycerone phosphate, outdated) to sn-glycerol 3-phosphate. Glycerol-3-phosphate dehydrogenase serves as a major link between carbohydrate metabolism and lipid metabolism. It is also a major contributor of electrons to the electron transport chain in the mitochondria.
Glycerol-3-phosphate dehydrogenase (GPDH) is an enzyme that catalyzes the reversible redox conversion of dihydroxyacetone phosphate (aka glycerone phosphate, outdated) to sn-glycerol 3-phosphate. Glycerol-3-phosphate dehydrogenase serves as a major link between carbohydrate metabolism and lipid metabolism. It is also a major contributor of electrons to the electron transport chain in the mitochondria.
Mutations of the cytosolic IDH 1 are a common feature in primary human brain cancers. Arginine 132 (R132) of IDH is highly conserved among different isoforms of IDH and is most commonly mutated to Histidine. Mutation of IDH1 R132H leads to accumulation of R(-)-2-hydroxyglutarate (2HG), which correlates with an increased risk for malignant brain tumors.
Keratan-sulfate endo-1,4-beta-galactosidase (EC 3.2.1.103, endo-beta-galactosidase, keratan sulfate endogalactosidase, keratanase, keratan-sulfate 1,4-beta-D-galactanohydrolase) is an enzyme with system name keratan-sulfate 4-beta-D-galactanohydrolase. This enzyme catalyses the following chemical reaction:Endohydrolysis of (1->4)-beta-D-galactosidic linkages in keratan sulfate. Hydrolyses the 1,4-beta-D-galactosyl linkages adjacent to 1,3-N-acetyl-alpha-D-glucosaminyl residues.
NADH Oxidase from Bacillus licheniformis was shown to display hydrogen peroxide-forming activity.
NADH Oxidase from Bacillus licheniformis was shown to display hydrogen peroxide-forming activity.
Creatininase from Pseudomonas sp. is a homohexameric enzyme with a molecular mass of 28.4 kDa per subunit. It is a cyclic amidohydrolase catalysing the reversible conversion of creatinine to creatine. Each monomer contains a binuclear zinc centre near the C termini of the β-strands and the N termini of the main α-helices. These zinc ions indicate the location of the active site.
Creatininase from Pseudomonas sp. is a homohexameric enzyme with a molecular mass of 28.4 kDa per subunit. It is a cyclic amidohydrolase catalysing the reversible conversion of creatinine to creatine. Each monomer contains a binuclear zinc centre near the C termini of the β-strands and the N termini of the main α-helices. These zinc ions indicate the location of the active site.
Glycogen synthase kinase-3 is a serine-threonine protein kinase involved in regulation of metabolic enzymes such as glycogen synthase and ATP-Citrate lyase, and of protein phosphatase-1. It also phosphorylates brain tau-proteins, inducing an Alzheimer-like state, and protooncogene transcription factors. GSK- is one of two isozymes.
Keratan-sulfate endo-1,4-beta-galactosidase (EC 3.2.1.103, endo-beta-galactosidase, keratan sulfate endogalactosidase, keratanase, keratan-sulfate 1,4-beta-D-galactanohydrolase) is an enzyme with system name keratan-sulfate 4-beta-D-galactanohydrolase. This enzyme catalyses the following chemical reaction:Endohydrolysis of (1->4)-beta-D-galactosidic linkages in keratan sulfate. Hydrolyses the 1,4-beta-D-galactosyl linkages adjacent to 1,3-N-acetyl-alpha-D-glucosaminyl residues.
In enzymology, an acylglycerol lipase (EC 3.1.1.23) is an enzyme that catalyzes a chemical reaction that uses water molecules to break the glycerol monoesters of long-chain fatty acids. This enzyme belongs to the family of hydrolases, specifically those acting on carboxylic ester bonds. This enzyme participates in glycerolipid metabolism.
In enzymology, an acylglycerol lipase (EC 3.1.1.23) is an enzyme that catalyzes a chemical reaction that uses water molecules to break the glycerol monoesters of long-chain fatty acids. This enzyme belongs to the family of hydrolases, specifically those acting on carboxylic ester bonds. This enzyme participates in glycerolipid metabolism.
The absence of exoglycosidase contaminants was confirmed by extended incubations with the corresponding pNP or MU-glycosides. No protease activity was detectable after incubation of the enzyme with 0.2 mg resorufin-labeled casein for ~18 hours at 37C according to the method described by Twining.