Supplier: Micro silica (silica fume), silica, fly ash, pozzolano, ggbfs and white cement, other cementatious materials and factory/plants specialized spare parts & equipments, automation & switchgear, drives & transmission spares, instrumentation & pump, pneumatic & hydraulic spares, valves & actuators, mechanical parts, high carbon ferro chrome, foundry pig iron, iron ore concentrate, chromite ore, antimony ore, silicon metal 441 (powder), ferro silicon (fesi), iron ore pellet, copper concentrate
Bentonite as is a particular kind of clay derived from volcanic ash and consists mainly of montmorillonite with minor amount of illite, kaolinite, cristobalite and other minerals. Bentonite has strong colloidal properties and, when in contact with water, increases its volume several fold by swelling, forming a tixotropic, gelatinous substance. Main uses of Bentonite take advantage of these colloidal properties. The main characteristics of Bentonite is its decolorizing power, that is the property of the earth to absorb selectively certain pigments rather than others according to the characteristics of the product to be decolourized(acidity, oxidation degree, origin and biological state etc.) APPLICATIONS For Drilling Fluids Pilling Binder (e.g. foundry-sand bond, iron ore pelletizer) Purifier Electrical Earthing Agriculture Cosmetics, Paper, Paints and Ceramics Absorbent (e.g. pet litter), and As a Groundwater Barrier. We CEMENTATION acquire own mines for Bentonite in India. We supply Bentonite for industrial, manufacturing, construction and drilling applications. Our production or supply capacity is more than 250,000 TPA. At CEMENTATION a special attention is given while mining Bentonite as the materials physical and chemical properties are depended upon the interference of the other metal ions present in the soil. Once the material sourced from mines are transferred to our factory and are left for drying in an open land to reduce moisture up to the desired level. After the drying process and other checks are done our skilled manpower will do a sorting of the material and then after the material goes to pulverizes for grinding to desired mesh size and are packed according to customers requirement. Our laboratories are well equipped to meet the needs of the diverse markets we serve.
Fly ash is a finely divided residue made from the combustion of pulverized coal that can be used to increase concrete durability and workability, while reducing permeability. As fly ash contains aluminous and siliceous components, it may form cement when mixed with water if the calcium content of the fly ash is high enough. Similarly, mixing fly ash with lime and water can create a substance similar to Portland cement. Fly ash can be separated into two main types, known as: Class F Class F fly ash contains particles covered in a type of melted glass allowing it to reduce the risk of concrete expansion and increase resistance to sulfates and alkali-aggregate reactions. Class C Class C fly ash contains a higher percentage of calcium oxide, making it more effective in strengthening structural concrete. Applications & Benefits of Fly Ash: Fly ash is used in commercial and industrial sectors for improving the durability and workability of concrete mixes. Fly ash is also used as filler in paints, adhesives, and metal and plastic composites. It's commonly used as structural fill for road construction and fly ash can be used to make bricks, ceramic tiles, plaster, Portland cement, and ready-mix cement.
Microsilica (silica fume) is a by-product of silicon metal or ferrosilicon industries, is an amorphous silicon dioxide SiO2. This product reacts chemically with the calcium hydroxide in the cement paste which yields a calcium silicate hydrate gel that significantly enhances strength and durability. The super fine microsilica fills the voids between cement particles creating a very dense, less permeable concrete. Physical characteristics: Color: gray or gray white powder Bulk density: 320-700 kg/m3 Chemical composition: Items SiO2 Al2O3 Fe2O3 MgO CaO Na2O Moisture Content 75-98% 1.0-0.2% 0.9-0.3% 0.7-0.1% 0.3-0.1% 1.3-0.2% Fineness: the fineness of the silica fume is less than 1 1/4m, and the average particle size is 0.1 0.3 1/4m, and the specific surface area is 20 - 28 m2/g. The fineness and specific surface area are about 80-100 times of cement and 50-70 times of fly ash. Maxtech Micro Silica supplies will be as per QCS 2014 (ASTM C1240): SiO2: >/= 92% LOI:
GGBFS Ground granulated blast furnace slag (GGBFS) The ground granulated blast furnace slag (GGBFS) is a by-product of iron manufacturing which when added to concrete improves its properties such as workability, strength and durability. This material is obtained by the heating of iron ore, limestone and coke at a temperature about 1500 degree Celsius. The process is carried out in a blast furnace. The formation of GGBFS is not direct. The by-product of iron manufacturing is a molten slag and molten iron. The molten slag consists of alumina and silica, also with the certain amount of oxides. This slag is later granulated by cooling it. For this, it is allowed to pass through a high-pressure water jet. This result in quenching of the particles which results in granules of size lesser than 5mm in diameter. The main constituents of blast furnace slag are CaO, SiO2, Al2O3 and MgO. These are the minerals that are found in most of the cementitious substances. The particles are further dried and ground in a rotating ball mill to form a fine powder, known as ground granulated blast furnace slag cement. Now different methods can be employed to perform the main process called as the quenching. Applications & Benefits of GGBFS: In concrete: The incorporation of ground granulated blast furnace slag in concrete manufacture gains many advantages which are mentioned below: GGBFS in concrete increases the strength and durability of the concrete structure. It reduces voids in concrete hence reducing permeability GGBFS gives a workable mix. It possesses good pumpable and compaction characteristics The structure made of GGBFS constituents help in increasing sulphate attack resistance. The penetration of chloride can be decreased. The heat of hydration is less compared to conventional mix hydration. The alkali-silica reaction is resisted highly. These make the concrete more chemically stable. Gives good surface finish and improves aesthetics. The color is more even and light. Lower chances of efflorescence. The maintenance and repair cost of structures are reduced thus increasing the life cycle of concrete structures. Unlike cement, GGBFS does not produce carbon dioxide, sulphur dioxide or nitrogen oxides. White Cement: White Portland Cement is of high quality, whiteness and strength, it essentially has the same properties and characteristics as gray cement, except for color. It is widely used in numerous applications such as precast concrete, cast-in-place concrete, terrazzo, median barriers, curbs, tile grout, paint, masonry units, swimming pools, glass fibre reinforced surface bonding mortars.
Pozzolan is a siliceous or siliceous and aluminous material that in itself possesses little or no cementitious value but will, in finely divided form and in the presence of moisture, chemically react with calcium hydroxide at ordinary temperatures to form compounds having cementitious properties. It is therefore classified as a cementitious material. There are both natural and artificial pozzolans. The quantification of the capacity of a pozzolan to react with calcium hydroxide and water is given by measuring its pozzolanic activity.