Grade: ASTM A36 , Gr50,Gr60 , BSEN S275JR/JO & S355 JR/JO , JIS SS400 & SS540 Length : 6 Meter to 12 Meter Thickness , t(mm) â?? 4 5 6 7 8 9 10 11 12 Section (a X a ) (mm) â?? Mass (kg/m) 40X40 2.42 2.97 3.52 --- --- --- --- --- --- 45X45 2.74 3.38 4.00 --- --- --- --- --- --- 50X50 3.06 3.77 4.47 --- --- --- --- --- --- 55X55 3.32 4.16 5.00 --- --- --- --- --- --- 60X60 3.70 4.57 5.42 6.28 7.09 --- --- --- --- 65X65 --- 4.96 5.89 6.83 7.73 8.69 9.76 --- --- 70X70 --- 5.37 6.38 7.38 8.36 9.40 10.30 --- --- 75X75 --- 5.76 6.85 7.93 8.99 10.03 11.24 --- --- 80X80 --- 6.12 7.34 8.49 9.63 10.8 11.9 --- --- 90X90 --- --- 8.3 9.61 10.9 12.2 13.4 14.74 15.9 100X100 --- --- 9.26 10.7 12.2 13.6 15 16.4 17.8 110X110 --- --- --- 11.72 13.4 15 16.6 18.26 --- 120X120 --- --- --- --- 14.7 16.5 18.2 19.9 ---
Fly ash is a finely divided residue made from the combustion of pulverized coal that can be used to increase concrete durability and workability, while reducing permeability. As fly ash contains aluminous and siliceous components, it may form cement when mixed with water if the calcium content of the fly ash is high enough. Similarly, mixing fly ash with lime and water can create a substance similar to Portland cement. Fly ash can be separated into two main types, known as: Class F Class F fly ash contains particles covered in a type of melted glass allowing it to reduce the risk of concrete expansion and increase resistance to sulfates and alkali-aggregate reactions. Class C Class C fly ash contains a higher percentage of calcium oxide, making it more effective in strengthening structural concrete. Applications & Benefits of Fly Ash: Fly ash is used in commercial and industrial sectors for improving the durability and workability of concrete mixes. Fly ash is also used as filler in paints, adhesives, and metal and plastic composites. It's commonly used as structural fill for road construction and fly ash can be used to make bricks, ceramic tiles, plaster, Portland cement, and ready-mix cement.
GGBFS Ground granulated blast furnace slag (GGBFS) The ground granulated blast furnace slag (GGBFS) is a by-product of iron manufacturing which when added to concrete improves its properties such as workability, strength and durability. This material is obtained by the heating of iron ore, limestone and coke at a temperature about 1500 degree Celsius. The process is carried out in a blast furnace. The formation of GGBFS is not direct. The by-product of iron manufacturing is a molten slag and molten iron. The molten slag consists of alumina and silica, also with the certain amount of oxides. This slag is later granulated by cooling it. For this, it is allowed to pass through a high-pressure water jet. This result in quenching of the particles which results in granules of size lesser than 5mm in diameter. The main constituents of blast furnace slag are CaO, SiO2, Al2O3 and MgO. These are the minerals that are found in most of the cementitious substances. The particles are further dried and ground in a rotating ball mill to form a fine powder, known as ground granulated blast furnace slag cement. Now different methods can be employed to perform the main process called as the quenching. Applications & Benefits of GGBFS: In concrete: The incorporation of ground granulated blast furnace slag in concrete manufacture gains many advantages which are mentioned below: GGBFS in concrete increases the strength and durability of the concrete structure. It reduces voids in concrete hence reducing permeability GGBFS gives a workable mix. It possesses good pumpable and compaction characteristics The structure made of GGBFS constituents help in increasing sulphate attack resistance. The penetration of chloride can be decreased. The heat of hydration is less compared to conventional mix hydration. The alkali-silica reaction is resisted highly. These make the concrete more chemically stable. Gives good surface finish and improves aesthetics. The color is more even and light. Lower chances of efflorescence. The maintenance and repair cost of structures are reduced thus increasing the life cycle of concrete structures. Unlike cement, GGBFS does not produce carbon dioxide, sulphur dioxide or nitrogen oxides. White Cement: White Portland Cement is of high quality, whiteness and strength, it essentially has the same properties and characteristics as gray cement, except for color. It is widely used in numerous applications such as precast concrete, cast-in-place concrete, terrazzo, median barriers, curbs, tile grout, paint, masonry units, swimming pools, glass fibre reinforced surface bonding mortars.
Car parking shades , tensile shade structures , portacabins/ modular cabins , ware house tents.Steel fabrication works, stainless steel fabrication works, export and installation
Tire Scrap, Mild Steel Billets (GOST 380-2005 3SP/4SP/5SP, ASTM A615 Grade 40 & 60, BS4449 Grade460, Structural Steel : Grade: ASTM A36, Gr50, Gr60, BSEN S275JR/JO & S355 JR/JO, JIS SS400 & SS540, Structural Steel Equal Angle, Structural Steel Channels, Structural Steel UPN.
Wooden Pallet.
Wooden pallet.
Wooden pallet and all types of packaging materials.
Rubwood Furniture.
Pallets, kraft, raw materials.
Wooden craft products (sticks animal statues).
Wooden pallets.
Wood shavings for horses.
Wood pallets.
Wooden furniture and fit out.
Olive wooden chessboard, furniture and cutlery.
All Species Of Wood /Veneer, Decking /Flooring Laminated Sheets .
Jewellery like earrings, necklace, bracelets made up of horn, bone, shell and wood.
Industrial equipment consist heat exchangers, industrial tanks and storages, fractionating columns, grating, power transmission tower and poles, dust collector systems, pelletizing equipment, spare parts of production lines, pipe racks for oil and petrochemical industries, refractory and insulation for pipes and turbines, steel structures such as industrial shed .manufacturing processes based on MTO (make to order) and ETO (engineering to order) methods
Furniture, palm oil.