Activated carbon (also known as active carbon or activated charcoal), is an artificial carbonaceous (carbon-rich) material. It is typically made from wood, but also can be made using bamboo, coconut husk, peat, woods, coir, lignite, coal, pitch, and other dense carbon sources. There are a variety of similar substances that fall under the general classification of activated carbon such as activated coal and activated coke, but they all share the properties of vast surface area per mass, exceptional microporosity, and a composition of almost exclusively elemental carbon. The pore structure of activated carbon can be seen with an electron microscope and is primarily responsible for its usefulness. Microscopes show a surface honeycombed with holes and crenelated with ridges which join to a similar structure deeper within the carbon. Due to this structure, a pound of activated carbon, for instance, can have as much as 100 acres of surface area packed into it. These small, low-volume pores allow for increased adsorption capacity (the process of chemical surface bonding, not to be confused with absorption) and allow more reactions between the carbon and other media. Activated carbon is therefore highly valued in filtering, deodorization, medical, and chemical applications, as most contaminants easily bind to it and remain trapped in the carbon microstructure via many small distance-dependent atomic attractions (known as London dispersion forces). Because carbon is produced through a relatively inexpensive and simple series of activation processes, it is widely available for applications; however, activated carbon must be constantly changed as it becomes clogged with contaminants, water, and becomes a breeding ground for dangerous microorganisms after a certain contact time. This means activated carbon is constantly produced to meet the demands of its uses and is kept in large supply to ensure no delay exists in the replacement process. How to Make Activated Carbon The production process of activated carbon, or the activation of carbon, exists in two forms. A carbonaceous source such as wood, coal, peat, or any organic carbonaceous material is carbonized, which means the pure carbon is extracted by a heating method known as pyrolysis. Once the material is carbonized, the material needs to be oxidized or treated with oxygen either by exposure to CO2 or steam or by an acid-base chemical treatment. The sections below will briefly detail these processes.