CNC Machine, since we started our business as SJ Tech in July of 2017.
Plasma cutting is a process that cuts through electrically conductive materials by means of an accelerated jet of hot plasma. Typical materials cut by this process include steel, aluminum, brass and copper though other conductive metals may be cut as well. Plasma cutting is often used in fabrication and welding shops, automotive repair and restoration, industrial construction, salvage and scrapping operations. Due to the high speed, precision cuts, combined with low cost of operation, plasma cutting sees a widespread usage from large scale industrial CNC applications down to small hobbyist shops. he basic plasma cutting process involves creating an electrical channel of superheated, electrically ionized gas i.e. plasma from the plasma cutter itself, through the work piece to be cut, thus forming a completed electric circuit back to the plasma cutter via a grounding clamp. This is accomplished by a compressed gas (oxygen, air, inert and others depending on material being cut) which is blown through a focused nozzle at high speed toward the work piece. An electrical arc is then formed within the gas, between an electrode near or integrated into the gas nozzle and the work piece itself. The electrical arc ionizes some of the gas, thereby creating an electrically conductive channel of plasma. As electricity from the cutter torch travels down this plasma it delivers sufficient heat to melt through the work piece. At the same time, much of the high velocity plasma and compressed gas blow the hot molten metal away, thereby separating i.e. cutting through the work piece. Plasma cutting is an effective means of cutting thin and thick materials alike. Hand-held torches can usually cut up to 38mm thick steel plate, and stronger computer-controlled torches can cut steel up to 150 mm thick. Since plasma cutters produce a very hot and very localized "cone" to cut with, they are extremely useful for cutting sheet metal in curved or angled shapes. A nozzle is a device designed to control the direction or characteristics of a fluid flow (especially to increase velocity) as it exits (or enters) an enclosed chamber or pipe. A nozzle is often a pipe or tube of varying cross sectional area, and it can be used to direct or modify the flow of a fluid (liquid or gas). Nozzles are frequently used to control the rate of flow, speed, direction, mass, shape, and/or the pressure of the stream that emerges from them. In a nozzle, the velocity of fluid increases at the expense of its pressure energy.
CNC machines & spare parts.
Marking machine, nameplate marking machine with steel tags & ties, CNC dot marking system.
CNC plasma cutting machine.
Plastic pom CNC machining part.
CNC lathes, CNC verticals, CNC horizontals.
CNC machine tools, hand tools, machine tools.
Saffron, Pomegranate, Cnc Machine Tool.
Used cnc, vmc, hmc, double column vmc, 5 axis vmc, etc.
Marine equipment, spare parts, hydraulic system components, piping system components, industrial machinery, CNC machine, lateh.
Plasic injection mould, die-casting mould, cnc h/v.
Inverter welding machine, airplasma cutting machine.
Heavy machinery, including horizontal/vertical boring mills, lathes, machining centers, planer mills, sheet metal bending rolls, press brakes, roll grinders, shears, and other general and cnc machinery, used machine.Ship, exporting
Oxy-fuel welding (commonly called oxyacetylene welding, oxy welding, or gas welding in the U.S.) and oxy-fuel cutting are processes that use fuel gases and oxygen to weld and cut metals, respectively. French engineers Edmond Fouché and Charles Picard became the first to develop oxygen-acetylene welding in 1903. Pure oxygen, instead of air, is used to increase the flame temperature to allow localized melting of the workpiece material (e.g. steel) in a room environment. A common propane/air flame burns at about 2,250 K (1,980 °C; 3,590 °F), a propane/oxygen flame burns at about 2,526 K (2,253 °C; 4,087 °F), an oxyhydrogen flame burns at 2,800 °C (5,070 °F), and an acetylene/oxygen flame burns at about 3,773 K (3,500 °C; 6,332 °F). Oxy-fuel is one of the oldest welding processes, besides forge welding. In recent decades it has been obsolesced in most all industrial uses due to various arc welding methods offering more consistent mechanical weld properties and faster application. Gas welding is still used for metal-based artwork and in smaller home based shops, as well as situations where accessing electricity (e.g., via an extension cord or portable generator) would present difficulties. In oxy-fuel welding, a welding torch is used to weld metals. Welding metal results when two pieces are heated to a temperature that produces a shared pool of molten metal. The molten pool is generally supplied with additional metal called filler. Filler material depends upon the metals to be welded. In oxy-fuel cutting, a torch is used to heat metal to its kindling temperature. A stream of oxygen is then trained on the metal, burning it into a metal oxide that flows out of the kerf as slag. Torches that do not mix fuel with oxygen (combining, instead, atmospheric air) are not considered oxy-fuel torches and can typically be identified by a single tank (oxy-fuel cutting requires two isolated supplies, fuel and oxygen). Most metals cannot be melted with a single-tank torch. Consequently, single-tank torches are typically suitable for soldering and brazing but not for welding.