Magnetic integrated transformer refers to a miniature transformer manufactured using integrated circuit technology, which integrates coils and iron cores. It has unique characteristics such as small size and lightweight. Compared with traditional iron core transformers, magnetic integrated transformers can not only reduce current loss and magnetic loss, but also have the advantages of more precise voltage regulation, lower noise and higher energy efficiency. Therefore, magnetic integrated transformers have become one of the technologies worth promoting in industries such as power networks and new energy.
With the continuous development of new energy technology, magnetic integrated transformers have also been widely used in the field of new energy. For example, in wind power generation systems, the use of magnetic integrated transformers can not only improve the stability of wind turbine speed regulation, but also eliminate harmonic interference. In addition, the high efficiency and miniaturization characteristics of magnetic integrated transformers have also been widely used in power conversion and battery management systems in electric vehicle charging stations.
Compared with traditional transformer technology, magnetic integrated transformers have the following significant advantages in the field of new energy:
1. Small size and light weight: Magnetic integrated transformers can achieve a significant reduction in volume and weight while ensuring the same power transmission capacity, which is conducive to wide application in new energy applications with limited space.
2. High efficiency and low loss: Magnetic integrated transformers have the advantages of higher energy efficiency and smaller current loss and magnetic loss, which can greatly improve the operating efficiency of new energy systems.
3. Precise voltage regulation: Magnetic integrated transformers have more precise voltage regulation characteristics, which is beneficial to voltage stability control in new energy situations.
At present, the application of magnetic integrated transformers in the field of new energy is still in its infancy, but its unique advantages and broad application prospects will make it more popular and in-depth used in the future. Magnetic integrated transformers will continue to play an important role in reducing power transmission energy consumption, improving system efficiency, and improving power quality in the future, and are expected to play an increasingly important role in the transformation of new energy.
D20601G Compatible YD12001HSNL 10/100 Base-T Ethernet LAN Magnetic Transformer for Game Controller (DIP 24PIN Single Port ) It is compliant to IEEE 802.3 , UL, Reach, RoHs, ISO19001,ISO14001 standards.It can be used to Industrial PC, New Energy, Network Firewall, Smart Meters.
Transformer UTG48C10 Compatible YD48001GSNL 10/100/1000 Base-T Telecom Ethernet Lan Magnetics for 1/0 Controller Guard System (SMD 48PIN Dual Port )
Halo TG110-S055N2RL Compatible LINK-PP LP1102NL 10/100 Base-T Ethernet Telecom Lan Magnetics for Game Controller (Height 5.10 SMD 16 PIN Single Port ) It can be used to Industrial PC, Embedded Main Board, Automation, Fieldbus System.
The YS48001GNL speed 10/100/1000 Base-T Dual Port SMD, It is compliant to IEEE 802.3 , UL, Reach, RoHs, ISO19001,ISO14001 standards.It can be used to Industrial PC, Media Player, Game Controller, Set-top Box. Compatible with transformer UTG48C10 .
Current transformer is an instrument that converts a large current on the primary side into a small current on the secondary side based on the principle of electromagnetic induction. The current transformer is composed of a closed core and windings. Its primary winding has a small number of turns and is strung in the circuit of the current that needs to be measured. The principle of current transformer is based on the principle of electromagnetic induction. The current transformer is composed of a closed core and windings. Its primary winding has very few turns and is connected in series in the line where the current needs to be measured. Therefore, it often has all the current of the line flowing through it. Its secondary winding has more turns and is connected in series in the measuring instrument and protection circuit. The current mutual inductance When the transformer is working, its secondary circuit is always closed, so the impedance of the series coil of the measuring instrument and the protection circuit is very small, and the working state of the current transformer is close to the short circuit.
The Iron Based Amorphous Ribbon is made by the composition of 80%Fe, 20%Sic and B-metal elements materials and formed by strip-casting technology. With high permeability, low loss and ideal stability, it can meet modern electronic product's requirements in high frequency, large current, small size and energy saving, and can also replace silicon steel, perm alloy and ferrite in electricity utility and electronic products. Performance Advantages & Feature R High saturation flux density-- to reduce winding turns, minimize product size R High resistivity, low coercivity--to improve production performance R Low loss(1/3 to 1/5 of silicon sheet)--to cool temperature, improve efficiency R Low excitation--decrease no-load current, and noise R Adjustable permeability--adopt different heat treatment process according to different requirement R High temperature stability--long-term operation under 130° C
RF transformer is to achieve the main transformation, coupling and impedance matching of signals in the RF (Radio Frequency) circuit. The following are the main functions of RF transformer. 1. Transformation effect: RF transformers can be used to transform the voltage or current level of signals. By adjusting the ratio of turns on different windings of the transformer, the signal can be stepped up or down to adapt to different RF circuit requirements. 2. Coupling effect: RF transformers can be used to achieve signal coupling and transmission. It can transmit signals from one circuit to another, realizing energy transfer and information transfer between different circuits. 3. Impedance matching: RF transformers can be used to achieve impedance matching to ensure maximum power transfer of signals between circuits. By adjusting the transformer's turn ratio and winding design, impedance matching between the signal source and load can be achieved to minimize signal reflections and losses. 4. Filtering and frequency selection: RF transformers can be used to implement frequency selection and filtering functions. Through the specific design and parameter selection of the transformer, selective transmission and filtering of signals within a specific frequency range can be achieved to meet the frequency selection requirements of the radio frequency circuit. In general, RF transformers play an important role in RF circuits and are mainly used for functions such as voltage transformation, coupling, impedance matching, and filtering. They are one of the key components for realizing radio frequency signal transmission, conversion and processing, and are widely used in radio frequency applications such as communication systems, radio equipment, broadcasting, radar, and antenna systems.
RF transformer is to achieve the main transformation, coupling and impedance matching of signals in the RF (Radio Frequency) circuit. The following are the main functions of RF transformer. 1. Transformation effect: RF transformers can be used to transform the voltage or current level of signals. By adjusting the ratio of turns on different windings of the transformer, the signal can be stepped up or down to adapt to different RF circuit requirements. 2. Coupling effect: RF transformers can be used to achieve signal coupling and transmission. It can transmit signals from one circuit to another, realizing energy transfer and information transfer between different circuits. 3. Impedance matching: RF transformers can be used to achieve impedance matching to ensure maximum power transfer of signals between circuits. By adjusting the transformer's turn ratio and winding design, impedance matching between the signal source and load can be achieved to minimize signal reflections and losses. 4. Filtering and frequency selection: RF transformers can be used to implement frequency selection and filtering functions. Through the specific design and parameter selection of the transformer, selective transmission and filtering of signals within a specific frequency range can be achieved to meet the frequency selection requirements of the radio frequency circuit. In general, RF transformers play an important role in RF circuits and are mainly used for functions such as voltage transformation, coupling, impedance matching, and filtering. They are one of the key components for realizing radio frequency signal transmission, conversion and processing, and are widely used in radio frequency applications such as communication systems, radio equipment, broadcasting, radar, and antenna systems.
MAIKE is specialized in the design and manufacture of high-quality customized planar transformers and inductors. The factory is based in Mianyang which is the only National Science & Technology city in China and is strategically placed to service the global electronics market. We design and manufacture for a variety of end-user applications ranging from Welding to Aerospace & Automotive & Battery Charging etc. The planar transformer is a transformer with high frequency, low profile, small height, and high operating frequency. Compared with conventional transformers, the size of the magnetic core of planar transformers is greatly reduced, especially when the height is reduced the most. This feature is very attractive in power supply equipment where space is strictly limited, making it the preferred magnetic component in many power supply equipment. The structural advantages of planar transformers also bring many advantages to its electrical characteristics: high power density, high efficiency, low leakage inductance, good heat dissipation, and low cost. Key Features-- (1) High current density. The wires of a planar transformer are actually planar conductors, so the current density is high. (2) High efficiency. The efficiency can reach 98%~99%. (3) Low leakage inductance. Approximately 0.2% of the primary inductance. (4) Good heat conduction. The hot aisle distance is short and the temperature rise is low. (5) Low EMI radiation. Good core shielding can keep radiation to a very low level. (6) Small size. The use of a small magnetic core can reduce the size accordingly. (7) The parameters have good repeatability. Because the winding structure is fixed and easy to pre-process, the parameters are stable. (8) Wide operating frequency range. The frequency can be from 50kHz to 2MHz. (9) Wide operating temperature range. The working temperature is -40 130. (10) Good insulation. The planar transformer is composed of overlapping conductive circuits and insulating sheets, thereby ensuring up to 4 kV insulation isolation between windings, primary-secondary and secondary-secondary.