Platinum-coated porous titanium plates are essential components used in electrolyzers for diverse industrial applications such as hydrogen production, water treatment, and energy storage. These plates play a critical role in facilitating efficient and reliable electrochemical reactions.
Specifications:
Material: porous Titanium plate
Coating: Platinum (usually 0.2-5 microns thick)
Porosity: 30%-40%
Thickness: 0.6-20 mm
Dimensions: Customizable based on specific electrolyzer requirements
Surface Area: Varies based on design and application, usually 50-100 cm�²
Features:
Catalytic Efficiency: The platinum coating on the porous titanium plates provides exceptional catalytic activity, enabling rapid and efficient electrochemical reactions. This results in improved performance and higher reaction rates, contributing to the overall efficiency of the electrolyzer.
Corrosion Resistance: Titanium is inherently resistant to corrosion, and the platinum coating further enhances this property, ensuring the longevity and stability of the plates even in harsh operating conditions. This resistance to corrosion guarantees the durability and reliability of the electrolyzer system.
Enhanced Mass Transfer: The controlled porosity of the titanium plates facilitates effective gas diffusion and reactant accessibility. This feature enhances mass transfer, allowing for faster reaction kinetics and improved overall electrolyzer performance.
Customizable Dimensions: Platinum-coated porous titanium plates can be customized to meet specific electrolyzer design requirements. The dimensions can be tailored to fit different system sizes and configurations, ensuring compatibility and versatility in various applications.
Application:
Hydrogen Production
Water Treatment
Energy Storage
Platinum-coated porous titanium plates are essential components used in electrolyzers for diverse industrial applications such as hydrogen production, water treatment, and energy storage. These plates play a critical role in facilitating efficient and reliable electrochemical reactions. Specifications: Material: porous Titanium plate Coating: Platinum (usually 0.2-5 microns thick) Porosity: 30%-40% Thickness: 0.6-20 mm Dimensions: Customizable based on specific electrolyzer requirements Surface Area: Varies based on design and application, usually 50-100 cm�² Why is platinum used as a coating material? Platinum is highly resistant to corrosion and possesses excellent catalytic properties, making it ideal for enhancing electrochemical reactions. It ensures long-term stability and efficiency of the electrode, resulting in improved performance and durability of the electrolyzer. What are the advantages of using porous titanium plates? The porous structure of titanium plates increases the available surface area for reactions, allowing for greater contact with the electrolyte. This enhances mass transfer and promotes efficient gas diffusion, leading to faster reaction rates and improved overall electrolyzer performance. Can the dimensions of the plates be customized? Yes, the dimensions of platinum-coated porous titanium plates can be tailored to suit specific electrolyzer designs and requirements. Customization allows for compatibility with different system sizes and configurations.
Platinum-coated titanium bipolar plates are essential components in fuel cells, where titanium serves as a sturdy base material and platinum is applied as a thin layer to enhance electrical conductivity and catalytic activity. These plates play a vital role in facilitating electrochemical reactions within fuel cells, particularly in proton exchange membrane fuel cells (PEMFCs), by providing a durable and efficient platform for electricity generation. The combination of titanium's corrosion resistance and platinum's catalytic properties ensures improved performance, longevity, and reliability in harsh electrochemical environments, making them integral to the efficiency of fuel cell systems. Specifications: Material: pure titanium, titanium alloy, or others. Size: 54*54*20mm, customized according to the drawings Coating: Platinum Coating thickness: 1 micron Coating area: All sides Type: Etching / Chemical Machining, Other Machining Services Surface: Smooth and flat surface Advantages of platinum-coated titanium bipolar plates in fuel cell applications: 1. Enhanced Catalyst Activity: The platinum coating on the titanium bipolar plates serves as a catalyst, promoting the necessary electrochemical reactions within the fuel cell. This leads to increased efficiency and improved overall performance of the fuel cell system. 2. Reduced Overpotential: Platinum-coated titanium bipolar plates help lower the overpotential required for various electrochemical reactions, which translates to more efficient conversion of chemical energy into electrical energy within the fuel cell. 3. Improved Heat Dissipation: The thermal conductivity of titanium combined with the catalytic properties of platinum allows for effective heat dissipation during fuel cell operation, contributing to the overall thermal management of the system. 4. Longevity and Durability: The corrosion-resistant nature of titanium, augmented by the protective platinum coating, enhances the durability and longevity of the bipolar plates, resulting in a longer service life for the fuel cell system. 5.Environmental Benefits: By enabling the efficient conversion of chemical energy into electricity, platinum-coated titanium bipolar plates contribute to the reduction of greenhouse gas emissions and help promote environmentally friendly energy generation.
We are involved in trading of titanium alloys and all type of titanium contain material like,Rulite, Ilemenite sand, Titanium slag etc
Titanium is a metal needed to make a variety of high-performance alloys. Most of the Titanium ore mined worldwide is used to manufacture titanium dioxide an important pigment, whiting, and polishing abrasive. We are instrumental in exporting and supplying of premium quality Titanium ore. It is basically a black heavy ore of iron and titanium. We can supply 3000-5000mt of Titanium ore per month to any destination.
Porous titanium sheets are highly desirable for use as the porous transport layer (PTL) in polymer electrolyte membrane (PEM) water electrolyzers. However, the passivation of titanium leads to an increase in surface contact resistance, thereby negatively affecting the performance of the electrolyzer. To address this issue and ensure long-term operation, a common approach is to apply platinum or gold coatings on titanium-based PTLs. The platinum-coated porous titanium electrode sheets are highly effective electrode materials in acidic environments. These products find applications in organic electrolysis, such as cysteine, Cr3+, Cr6+, CN, and toxic substance electrolysis. They can also serve as auxiliary electrodes in the electroplating industry, including as auxiliary anodes for chromium, electrolytic copper, and electrolytic zinc, as well as in electrolytic cobalt and nickel processes. Parameters Material: Sintered Porous Titanium Sheet Coating: Platinum (Pt) Thickness of platinum: 1 microns Porosity: Customizable, commonly between 30% and 40% Pore Size: 10 microns Size: 46*46* 2mm Features Enhanced Conductivity: The platinum coating on sintered porous titanium sheets provides excellent electrical conductivity, facilitating efficient electron transfer during electrochemical reactions. Durability and Corrosion Resistance: Titanium's inherent corrosion resistance, combined with the protective platinum coating, ensures prolonged electrode lifespan, even in aggressive chemical environments. High Surface Area: The porous structure of the titanium sheets offers a large surface area, enabling more active sites for electrochemical reactions and enhancing cell efficiency. Customizable Pore Size: The pore size of sintered porous titanium sheets can be tailored to specific applications, allowing for optimized mass transport and improved electrolyte flow.
Sheet :Thickness:0.6-10mm Max Length:1000mm Max width:340mm Pipe : OD10-150MM* wall thickness 2-5MM Materials : titanium GR1 GR2 Feature: 1.Working Temperature:-200-1000°C 2.Corrosion Resistance 3.High Filtering Efficiency 4.Metallic capacities, such as noise reduction,hot resistance,heat conduction,high strength and etc 5.Easy to welding and long working life Filter Shape: Could be cartridge filters,disc filters ,cup filters,cap filters,filter palte and etc Application: separation and purification of solid-liquid, gas-liquid and gas-solid in the petrifaction, hydraulic manufacturing and medical apparatus and instruments of basic industries. Technique parameters titanium powder sintering filter element technique parameters using temperatur:â?¤300°C filtering level filtration precision um maximum diameter um permeability coefficient 10-12m2 permeability m3/h.m2.kpa thickness mm compression strength Mpa/cm3 T9 0.2 2.5 1.5 0.6-10 3 T8 0.5 4 3 0.6-10 3 T7 1 6 5 0.6-10 3 T6 2 10 15 0.6-10 3 T5 5 15 0.04 40 0.6-10 2.5 T4 10 30 0.15 120 0.6-10 2.5 T3 20 60 1.01 250 0.6-10 2.5 T2 30 100 2.01 500 0.6-20 2.5 T1 50 160 3.02 800 0.6-20 2.5 The product performance can achieve and even exceed GB. The internal pressure of powder rolled and roll tube welding is more than 0.3Mpa
Mainly used in separation and filtration petrochemicals, liquid drug manufacturing, medical equipment, and other fields. Material: titanium Specifications:max.Width 340mm, max.Length 1000mm, max.Thickness 3.0mm Precision:0.2 to 65um
Product Introduction Sintered porous titanium plates are a form of material made from titanium powder that has been heated and crushed to produce a particularly porous and light structure. These plates have a high strength-to-weight ratio and are resistant to corrosion and wear. Sintered porous titanium plates are used in various applications where a high level of strength and durability is required, such as in the aerospace, automotive, and medical industries. Parameters Material: Titanium Porosity: 30%-40% Pore size: 1um-50um Thickness: above 1mm Dia: 1MM above Features 1. High Strength-to-Weight Ratio: Sintered porous titanium plates have a high strength-to-weight ratio, which means they are strong and durable while also being lightweight. This makes them ideal for applications where weight is critical, such as in the aerospace industry. 2. Corrosion Resistance: Titanium is highly resistant to corrosion, making it ideal for use in harsh environments where other materials may corrode or degrade over time. This makes sintered porous titanium plates a good choice for applications in the chemical and petrochemical industries. 3. Biocompatibility: Titanium is biocompatible, which means it is not toxic to living tissue and does not cause adverse reactions when implanted in the human body. This makes sintered porous titanium plates ideal for medical applications such as implants and prosthetics. 4. Customizable Pore Size and Distribution: Sintered porous titanium plates can be customized to have specific pore sizes and distributions, which makes them useful for applications such as filtration and catalysis. 5. High-Temperature Resistance: Titanium has a high melting point and can withstand high temperatures, making it ideal for use in high-temperature applications such as heat exchangers and furnace components. Processing The processing of sintered porous titanium plates involves several steps. First, the high purity of titanium powder will be sieved and then molded and pressed into a desired shape. Then the material is heated in a furnace to sinter the titanium particles together to form a solid structure. The final product is then machined to the desired shape and size.
Sintered porous titanium plates are a form of material made from titanium powder that has been heated and crushed to produce a particularly porous and light structure. These plates have a high strength-to-weight ratio and are resistant to corrosion and wear. Parameters Material: titanium Porosity: 30%-40% Pore size: 1um-50um Thickness: above 1mm DI: 1MM above Features 1.High Strength-to-Weight Ratio. 2.Corrosion Resistance. 3.Biocompatibility. 4.Customizable Pore Size and Distribution. 5.High Temperature Resistance. Application Chemical Industry: Sintered porous titanium plates are used in chemical processing equipment, such as filters and catalysts, due to their resistance to corrosion and customizable pore size. Medical Industry: Sintered porous titanium plates are used in medical implants and prosthetics such as bone substitutes and dental implants� due to their biocompatibility, strength, and durability. Energy Industry: Sintered porous titanium plates are used in fuel cells and batteries due to their high strength-to-weight ratio and ability to conduct electricity. Environmental Industry: Sintered porous titanium plates are used in water treatment systems and air filters due to their customizable pore size and distribution and resistance to corrosion. Processing The processing of sintered porous titanium plates involves several steps. First, the high purity of titanium powder will be sieved and then mold pressed into a desired shape. Then the material is heated in a furnace to sinter the titanium particles together to form a solid structure. The final product is then machined to the desired shape and size.