Noni is known as Morinda Citrifolia. Thousands of years ago, the people living in the South Pacific discovered a small flowering shrub" Noni tree"the fruit of the body that was rich in human body cells, and had a physical effect. Nicepal Noni Powder is selected from Hainan fresh noni made by the world's most advanced spray-drying technology and processing, which keeps its nutrition and aroma of fresh noni well. Instantly dissolved, easy to use.
Features
Keep fresh nutrients and pure noni flavor, quality assurance, color natural, good solubility, no preservatives, no essence or synthetic pigment.
Camu-camu is a native Amazonian fruit mainly known for its high vitamin C content. Its composition confers high antioxidant capacity on this fruit and makes it a potential source of antioxidant products. The use of spray-drying with the aid of a carrier agent is a technique that has been applied for the preservation of important components of foods and drugs. The objective of our work was to evaluate the influence of those agents used as shell material on the vitamin content and total phenolic compounds of camu-camu powder juice obtained by spray-drying. Materials and methods. A commercial frozen camu-camu pulp was the raw material; maltodextrin and gum arabic were the selected carrier agents. Processes were performed in a mini-spray-dryer with inlet and outlet air temperatures of 180 °C and 85 °C, respectively, and a drying air flow rate of 700 L·h1. Laser diffraction was used to determine the particle size distribution of the samples, and sorption isotherms of spray-dried camu-camu were measured using a static gravimetric method. Total phenolic compounds and vitamin C were determined in the raw pulp and in the powders obtained. Results. When using gum arabic and maltodextrin as the carrier agents, the moisture results obtained for the spray-dried camu-camu powders were 2.8% and 3.2%, respectively; the process yield was 84% and 72%, respectively. The spray-dried powder produced using gum arabic presented higher contents of vitamin C [(15,363 ± 226) mg·100 g1] and phenolic compounds [(6,654 ± 596) mg GAE·100 g1] than the powder obtained with maltodextrin, respectively (11,258 ± 298) mg·100 g1 and (5,912 ± 582) mg GAE·100 g1. Conclusions. The concentration factors for the vitamin C and phenolic compounds in camu-camu powder reveal the effectiveness of spray-drying to preserve the antioxidant capacity of this fruit. Gum arabic was a more effective barrier than maltodextrin for bioactive compound retention.