Supplier: Aluminium ( ingots, t bars, sows, rods), copper (cathodes, cakes, billets, ingots, rods), lead (ingots), nickel (cathodes both cut and uncut briquettes, pellets, discs, etc.), tin (ingots, etc.), zinc (ingots both regular size and jumbos), steel billets (all types including crc, hrc, hdgc, plates, sheets), concentrates and ores for above items including bauxite, manganese, clinker and iron ores etc), scraps of above items including hms 1&2 and steel scraps
Buyer: Aluminium ( ingots, t bars, sows, rods), copper (cathodes, cakes, billets, ingots, rods), lead (ingots), nickel (cathodes both cut and uncut briquettes, pellets, discs, etc.), tin (ingots, etc.), zinc (ingots both regular size and jumbos), steel billets (all types including crc, hrc, hdgc, plates, sheets), concentrates and ores for above items including bauxite, manganese, clinker and iron ores etc), scraps of above items including hms 1&2 and steel scraps
We hold immense expertise in making available Copper in many forms including LME registered and non registered cathodes, billets, rods, cakes, bars, foil, sheet, granules, plates, powder, shot, turnings, wire, insulated wire, mesh and “evaporation slugs”. Copper is one of the most important metals. Copper is reddish with a bright metallic lustre. It is malleable, ductile, and a good conductor of heat and electricity (second only to silver in electrical conductivity). Its alloys, brass and bronze, are very important. Monel and gun metals also contain copper. The most important compounds are the oxide and the sulphate, (blue vitriol
Desulphurisation Slag is an iron slag derived from the desulphurisation skimming process. This material is an iron by- product that is encapsulated in varying levels of contaminants (S,Mg,Si), but has a stable chemistry with 75 -80% chemistry. The level of Fe% in the slag has been estimated by water displacement test. This material con offer competitive advantages respect other metal scraps: Price; Stable Chemistry; The material can be loaded loose in 20 heavy duty container. For further details feel free to contact us.
We are proposing about 1000 1200 Mt/ton monthly of iron slag derived from the desulphurisation skimming process. This material is a iron by- product that is encapsulated in varying levels of contaminants (S,Mg,Si). In order to enhance its usability, the material is processed and screened. We can propose two specifications of Iron Slag : 1. >85% Fe Average 600mm Max Fraction 2. >78% Fe Average 20-300mm Fraction The level of Fe% in the slag has been estimated by water displacement test. For any further information please feel free to contact
This Cast Iron slag is a by-product derived from the production of thermal insulating products. The byproduct is a ferrous slag which can be utilised in an electric arc furnace to produce crude steel. Physical Description On visual inspection, it appears to be made up of irregular shapes. Dimension: 500mm -800mm Chemical Composition Its chemical composition is homogeneous and stable with Fe contents in the range of 90 +/- 5% and P contents < 0.6% S around 0.15% and C% around 3.5%. Packing: Loose in container Loading: in 20 Container For further information, please feel free to contact us.
We are proposing about 2000tons of iron slag derived from the desulphurisation skimming process. This material is a iron by- product that is encapsulated in varying levels of contaminants (S,Mg,Si). In order to enhance its usability, the material is processed and screened. We can propose two specifications of Iron Slag - European Code: 19.12.01 - Basel Code: B1010 - HS Code: 2619.0020 - Quantity: 2000 tons currently available - Monthly quantity: 500-1000 tons depending on production - Size: 350 1200 mm - Fe content: from 77 to 86% - C content: above 2,5-3% - Bulk density: 2,8-3,4 tons/m3 - Loading type: loose in 20 (26-27 tons on average) The level of Fe% in the slag has been estimated by water displacement test. For any further information please feel free to contact us
The Incinerated scrap or E46, is the by-product derived from the reprocessing of incinerated domestic waste. After the combustion process, the furnace output (IBA Incinerator bottom ash) is firstly washed, magnetically separated and screened to separate any no ferrous material. At a visual inspection, the material is fragmentized, with iron and steel parts, resulting partly cut or in shredded form. The stock appears heterogeneous and contains all kind of cut or dismantled steel parts such as sheets, bars, frames, wires, bolts and other iron/steel household residues. The incinerated scrap is eventually oxidized, due to the thermal and cooling treatments, that the material has been submitted to. The burnt scrap also contains minor slag parts, ash and iron oxide, due to the recovery process. Such components are inherent and adhere to the scrap surface. The total impurities, can be sorted, but not fully removed. The consignment does not contain any type of arms, ammunition, mines, shells, cartridges, radioactive contaminated, or any other explosive material in any form either used or otherwise. The collected stock, is stored in open air, on cemented flooring. It can be loaded loose in 20â?? heavy duty container. Please feel free to contact us for further details.
We offer a wide plethora of Zinc in many forms including LME registered and non registered Special High Grade Ingots and Jumbos, cathodes, dust, foil, granules, powder, pieces, anodize activated powder, shot, and a mossy form. Zinc is a bluish-white, lustrous metal. It is brittle at ambient temperatures but is malleable at 100 to 150°C. It is a reasonable conductor of electricity, and burns in air at high red heat with evolution of white clouds of the oxide. Plating thin layers of zinc on to iron or steel is known as galvanizing and helps to protect the iron from corrosion.
We are able to supply Tin in many forms including LME registered and non registered, ingots, slabs, bars, foil, granules, powder, anodized activated powder, shot, wire, sticks, ingots, and “mossy tin”. Tin is a silvery-white metal, is malleable, somewhat ductile, and has a highly crystalline structure. The element has two colours, with a cubic structure which changes at allotropic forms. On warming it is grey, the ordinary form of the metal. When Tin is cooled below 13.2°C, it changes slowly from white to grey or tetragonal structure. This change is affected by impurities such as Aluminium and Zinc, and can be prevented by small additions of Antimony or Bismuth.