All type of urea are available- Urea Industrial grade Urea Agricultural Urea Urea also known as carbamide is the worlds most common nitrogen fertilizer and has been used uniformly in all the agricultural lands of the world. Urea can be produced as prills, granules, flakes, pellets, crystals, and solutions. Urea is a nitrogenous compound containing a carbonyl group attached to two amine groups with osmotic diuretic activity. It is widely used in fertilizers and is an important raw material for the chemical industry.
Agricultural urea N46 46% Properties of urea Urea, also known as carbamide, carbamide and urea. Pure urea is white, tasteless, odorless, needle shaped or prismatic crystal, with a melting point of 132.7 â?? under normal pressure. It is hygroscopic, deliquescent, hydrolyzable, and weakly alkaline. It is made into compound fertilizer with acid fertilizer. Urea is an organic compound composed of carbon, nitrogen, oxygen and hydrogen. It is a white crystal. Urea is one of the simplest organic compounds. The most important use of urea is as fertilizer. Its nitrogen content is more than 46%. After being converted into ammonium carbonate in soil, urea is hydrolyzed and absorbed by plants. It is the nitrogen fertilizer with the highest nitrogen content at present. Molecular formula of urea: CO (NH2) 2, molecular weight 60.06, density 1.335g/cm �³ï¼? The melting point is 132.7 â??. Soluble in water and alcohol, insoluble in ether and chloroform. It is slightly alkaline. It can react with acid to form salt. It has hydrolysis. Condensation reaction can be carried out at high temperature to produce biuret, triuret and cyanuric acid. Heat to 160 â?? and decompose to generate ammonia gas and turn into cyanic acid at the same time. Urea can be hydrolyzed into ammonia and carbon dioxide under the action of acid, alkali and enzyme (acid and alkali need to be heated). Unstable to heat, heat to 150 â??ï½? 160 â?? to deamination to biuret. Urea is easily soluble in water, 105g can be dissolved in 100ml water at 20 â??, and the aqueous solution shows neutral reaction. There are two kinds of urea products: crystalline urea is white acicular or prismatic crystal with strong hygroscopicity; Granular urea is a translucent particle with a particle size of 1~2mm, which has a smooth appearance and improved moisture absorption. Urea is a physiologically neutral fertilizer, which does not leave any harmful substances in the soil and has no adverse effects after long-term application. However, a small amount of biuret, also known as biuret, will be produced when the temperature is too high during granulation, which has an inhibitory effect on crops. Urea is molecular before conversion and cannot be adsorbed by soil, so it should be prevented from being lost with water; The ammonia formed after conversion is also volatile, so urea should also be deeply covered with soil. Urea is the first synthetic organic substance and widely exists in nature, such as 0.4% urea in fresh human feces. The new version of national standard GB/T2440-2017 for urea has been officially implemented since July 1, 2018. Compared with the replaced 2001 standard, certain adjustments have been made. New standard GB/T2440-2017
CASå?·:57-13-6 Urea for vehicles, agricultural urea, urea N46ï¼? When the temperature of urea is below 20 â?? and the relative humidity is below 70%, it will not only not absorb moisture, but also evaporate water and reduce its water content; When the temperature exceeds 20 â?? and the relative humidity is higher than 80%, it starts to absorb moisture, and becomes paste when it is serious. When the air is dried again, it will re agglomerate, which is only inferior to ammonium nitrate. When the urea aqueous solution is at 80 â??, hydrolysis and decomposition reactions will occur, forming ammonium carbamate, ammonia gas and carbon dioxide respectively. Under acid and alkaline conditions, urea will decompose faster when it is heated. Urea is easy to combine with straight chain carbohydrates to form crystalline additional compounds; It forms a variety of double salts with various inorganic compounds, such as Ca (NO3) 2 �· 4CO (NH2) 2, NH4Cl �· CO (NH2) 2, CaChemicalbookSO4 �· 4CO (NH2) 2, MgSO4 �· 4CO (NH2) 2 �· 3H2O, Mg (NO3) �· 4CO (NH2) 2 �· 2H2O, etc; It is easy to form urea phosphate, dicalcium phosphate and water with monocalcium phosphate, namely Ca (H2PO4) 2 �· H2O+CO (NH2) 2 â?? H3PO4 �· CO (NH2) 2+CaHPO4+H2O; With nitric acid, it is easy to form urea nitrate, CO (NH2) 2+HNO3 â?? CO (NH2) 2 �· HNO3, which combines and relaxes the two; It can combine with formaldehyde to form urea formaldehyde compounds (uric acid rubber shrinks), in which the higher proportion of formaldehyde is urea resin, and the lower proportion is slow-release (effective) urea.