Titanium foil is a thin sheet of titanium metal typically less than 0.5 millimeters thick. Titanium foil is produced through a process known as rolling, which involves passing a titanium ingot through a series of rollers to gradually reduce its thickness. The resulting titanium foil is typically very thin, with a thickness ranging from a few micrometers to a few millimeters. Titanium foil is valued for its high strength-to-weight ratio, excellent resistance to corrosion, and biocompatibility with the human body. What is titanium? Titanium is a relatively new type of metal that exhibits unique properties which are affected by the presence of impurities such as carbon, nitrogen, hydrogen, and oxygen. The� impurity content� in pure titanium is typically less than 0.1%, resulting in a metal with low strength but high plasticity. For industrial purposes, titanium with a purity of 99.5% is commonly used. This grade of titanium has a density of 4.5 g/cm�³, a� melting point� of 1800â??, and a thermal conductivity of 15.24 W/(m. K). It also has a� tensile strength� of 539 MPa, an elongation of 25%, a� section shrinkage rate� of 25%, an� elastic modulus� of 1.078 �? 10â?µ MPa, and a hardness of HB195. Parameter Material: titanium Grade: Gr 1, 2, 5(6Al-4V), 7(Ti-0.15Pd), 9(3Al-2.5V), 12, 23(6AL-4V ELI), 15V-3Al-3Sn-3Cr Thickness: 0.01-0.1mm Width: 10-500mm, customized Length: 10-1000mm, customized Processing Service: Bending, Welding, Decoiling, Cutting, Punching Standard: ASTMB265 Ti Content (%): 99.6% Features 1. High strength-to-weight ratio: Titanium is known for its high strength-to-weight ratio, which means that it is strong but also lightweight. This makes it ideal for applications where weight is a critical factor, such as aerospace and sporting goods. 2. Excellent corrosion resistance: Titanium has excellent corrosion resistance, making it useful in harsh or corrosive environments, such as marine or chemical processing applications. 3. Biocompatibility: Titanium is biocompatible, which means that it is not harmful to living tissue or the human body. This makes it useful for medical implants such as dental implants, joint replacements, and pacemakers. 4. Low thermal expansion: Titanium has a low coefficient of thermal expansion, which means that it does not expand or contract significantly with changes in temperature. This makes it useful in applications where dimensional stability is important, such as precision engineering.